This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII1.2018.2860934, IEEE

Transactions on Circuits and Systems II: Express Briefs

A Low-Power Parallel Architecture for
Linear Feedback Shift Registers

Xinmiao Zhang, Senior Member, IEEE,

Abstract—Linear feedback shift registers (LFSRs) are used to
implement BCH encoders and cyclic redundancy check (CRC),
which are broadly used in digital communication systems. Pre-
vious parallel LFSR designs adopt a state-space transformation
that shortens the feedback data path and reduces the gate count.
Transformations have been designed to minimize the total gate
count of the three involved matrix multiplications. However,
the transformation matrix multiplication is only active for one
clock cycle at the end. In this paper, we propose an alternative
transformation matrix construction that effectively shifts the
complexity from the other two matrices, which are active in every
clock cycle, to the transformation matrix without increasing the
critical path or the total gate count. For an example CRC-32,
the proposed design achieves 33% power and 8% gate count
reductions without compromising the achievable clock frequency.

Index Terms—BCH encoder, cyclic redundancy check (CRC),
linear feedback shift register (LFSR), low-power, parallel archi-
tecture, substructure sharing

I. INTRODUCTION

BCH codes and cyclic redundancy check (CRC) are broadly
used to ensure the reliability and integrity of data transmission.
The basic function in BCH encoding and CRC en/decoding
is to compute remainders of polynomial divisions, which is
implemented by linear feedback shift registers (LFSRs). The
high-throughput requirements of modern digital communica-
tions demand LFSRs with high level of parallelism.

To achieve p-parallel processing, the states of the registers
in the LFSR after p clock cycles are derived by look-ahead
computations [1], which result in a matrix multiplication in
the feedback loop that limits the achievable clock frequency.
A state-space transformation approach was introduced in [2] to
modify the feedback matrix at the cost of a pre-processing and
a transformation matrix multiplications. A certain companion-
matrix-like transformation was used in this work to make
the critical path of the feedback matrix multiplication one
XOR gate, although the other two matrix multiplications have
longer data paths. In [3], exhaustive search is carried out over
the same type of transformations to identify the one leading
to the smallest overall gate count. Triangular transformation
matrices are adopted in [4]. From exhaustive search, such
transformations lead to LFSR designs with lower overall gate
count without sacrificing the critical path. Another line of work
interprets the LFSR function as recursive filtering, and parallel
processing techniques for recursive filters are applied [5]. The
complexity of such parallel LFSRs is reduced by adopting a

Xinmiao Zhang is with the Department of Electrical and Computer En-
gineering, The Ohio State University, Columbus, OH 43210, USA. Email:
zhang.8952 @osu.edu.

transposed format of the recursive filter [6]. Nevertheless, its
gate count is larger than the state-space transformation-based
design in [4]. Parallel LFSRs can be also derived by apply-
ing the unfolding technique to serial LFSRs. Although the
achievable clock frequency can be increased by manipulating
the divisor polynomial [7] or applying alternative look-ahead
pipelining to the critical loop [8], their area is larger.

In the recursive filter approaches [5], [6], all logic gates
are active in every clock cycle. In those based on state-
space transformations [2]-[4], the pre-processing and feedback
matrix multiplications are active in every clock cycle, whereas
the transformation matrix multiplication is only running in the
last clock cycle.

This paper proposes a low-power parallel LFSR architecture
that effectively shifts the complexities of pre-processing and
feedback matrix multiplications to transformation matrix mul-
tiplication without increasing the overall gate count or critical
path. Our design is achieved by exploring different state-space
transformations. Instead of searching for a transformation
matrix of certain format leading to minimized total gate count,
our construction starts with the inverse transformation matrix
and searches for a matrix that minimizes the gate count
of the pre-processing matrix multiplication. The proposed
matrix also leads to reduced number of nonzero entries in
the feedback matrix. To better evaluate the logic complexity,
a simplified critical path delay (CPD) computation method for
systems adopting substructure sharing (SS) is also presented.
Compared to the design in [4], the proposed design achieves
8% gate count reduction and 33% power reduction based on
the number of logic gates active in each clock cycle for an
example CRC-32.

This paper is organized as follows. Section II introduces par-
allel LFSRs based on state-space transformation. The proposed
transformation construction is detailed in Section III. Section
IV presents the modified SS scheme for given critical path
constraints. Complexity comparisons are provided in Section
V and conclusions follow in Section VI.

II. PARALLEL LFSRS BY STATE-SPACE TRANSFORMATION

The serial LFSR shown in Fig. 1 is configured using a
generator polynomial g(x) = 2" % + g, 12" F 14 4
g1+ go. For binary BCH codes and CRC, the coefficients are
binary. When the input u(z) is added to the most significant
tap, this LFSR implements the division of u(x)z"~* by g(x).
Only the remainder r(x) is of interest to BCH encoding and
CRC. The coefficients of u(z) are input serially starting with
the most significant one, and r(z) is located in the registers
after the last coefficient of u(x) is sent in.

1549-7747 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII1.2018.2860934, IEEE

Transactions on Circuits and Systems II: Express Briefs

Fig. 1. Serial LFSR architecture

Denote the register states at clock cycle ¢ by r(t) =
[Pr—k—1(t), rn—g—2(t), -+ ,ro(t)]’, where " represents trans-
pose. Let u(t) be the input at clock cycle ¢. Then

r(t+1)=A xr(t) + b x u(t) (1)

where A is a companion matrix

gn—k—1 1 0 0
In—k—2 0 1 0

A= : Do 0
g1 0 0 1

go 00 --- 0

and b = [g,—k—1, " ,91,9go) - Substituting (1) back to itself
p times, it can be derived that

r(t+p) = AP xr(t) + B, x u,(t), (2)

where B, = [AP7'b,--- Ab,b] and wu,(t) =
[w(t), - ,u(t +p—2),u(t +p—1)'. A p-parallel LFSR
that processes p bits in each clock cycle can be implemented
according to (2).

The multiplication of AP is in a feedback loop, and its data
path limits the achievable clock frequency of the overall LFSR.
To address this issue, it was proposed in [2] to transform the
state vector as r(t) = T x rp(t), where T is non-singular and
is referred to as the transformation matrix. Accordingly, the
state equation in (2) for p-parallel processing becomes

I‘T(t —|—p) = ApT X I‘T(t) + BpT X up(t), (3)
where
Ay =T 'xA?xT

4
B,r =T 'xB, @

B,r and A,7 are also referred to as the pre-processing and
feedback matrices, respectively, in this paper. A block diagram
for implementing such a transformed p-parallel LFSR is shown
in Fig. 2. The complexities of the three matrix multiplications
vary with T, whose dimension is (n — k) X (n — k).

The T matrix considered in [2] is in the format of T =
[b1, APby,--- ,A(”*k’l)pbl], so that A,r is a companion
matrix, which has only one XOR gate in the data path. It
turns out that the overall gate count is also reduced by the
transformation, and exhaustive search was done in [3] to find
the b; leading to minimal gate count. In modern CMOS
process, 5 or 6 XOR gates can easily fit into 1ns delay, and it
becomes unnecessary to keep an extremely short 1-XOR-gate
data path. To further reduce the gate count, [4] adopts an upper
triangular matrix for T, which has all ‘1’s in the diagonal, and
the nonzero entries in row ¢+ 1 equal to those in row 7 shifted
to the right by one bit with the last bit eliminated.

Fig. 2. Transformed p-parallel LESR architecture

III. LOW-POWER PARALLEL LFSRS

In existing designs, [4] has the lowest gate count. Neverthe-
less, this design spends a higher portion of the gates on the pre-
processing (B,r) and feedback matrix (A,r) multiplications.
These multiplications are active in every clock cycle, while the
T matrix multiplication is only done for one clock cycle at
the end. The dynamic power consumption can be compared by
the number of logic gates switching in each clock cycle. One
effective way to lower the power consumption is to reduce the
gate counts of B, and A7, even though T ends up having
more gates.

AJ*! for j # —1 is a collection of column vectors that are
binary representations of ™ **7 ... a2%J al*i where o is
a root of the LFSR generator polynomial. Also, b is the vector
representation of a” %, and A’b is the vector representation
of a™~**J_ Following prior work, it is assumed that p = n—k.
In this case, A? = B,. From (4), exhaustive search can be
carried out to find a T~! that minimizes the gate count of
B,r. T is determined from T~!. Although the gate count of
A, may not be minimized, having the lowest gate count in
the T~ x AP part also helps to reduce the complexity of A7
multiplication.

To define a valid transformation, the only requirement on
T~! or T is that it must be invertible. n — k can be 16, 32 or
higher in CRC and BCH codes. Searching over every possible
(n—k) x (n— k) binary matrix for the optimal T~! or T has
prohibitive complexity. In [3] and [4], T of special format as
explained in Section II are considered. The search is reduced
to the first column or row, and the other columns or rows are
derived by shifting and modulo reduction. Our search is done
on T~ instead. Also the later rows of T~ are not derived
from the first row just in order to reduce the search complexity.
Instead, the goal is to minimize the weight of each row in
B, r. The number of XOR gates needed to implement a matrix
multiplication can be reduced by SS, which means common
intermediate results among multiple outputs are computed
once and shared. Nevertheless, comparing the row weights
often gives a good indication of which matrix multiplication

requires less logic gates.
Our proposed T~ is in the following format

0 0 0 0 1
0 0 . 0 1 tio
) 0 0 1 t2,1 t270
T '= ,
0 1 th—k-22 tn-k-21 th—k—20
1 thok—1mn—k—2 tn-k-12 tnk-1,1 tn_k—1,0

Such a lower anti-triangular matrix with the anti-diagonal
set to all ‘I’s guarantees that T~! is invertible. It is also
possible to use a lower triangular, upper triangular, or upper
anti-triangular format for T~!. Denote the nonzero entries in

1549-7747 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII1.2018.2860934, IEEE

Transactions on Circuits and Systems II: Express Briefs

row i by t; = [1,¢;,-1, - ,%i1,t:,0]. Exhaustive search is
done to find the t; that minimizes the weight of row 7 in
B, r, and the search for different t; is done independently. The
overall search is carried out on 2"~ *F=1 4 2n=k=2 ... 4 ol —
(14277%=2)(n — k — 1) instead of 2" ~*~1 or 2" vectors
as in [3] and [4], respectively. Nevertheless, for n — k = 16
the search takes less than a second to finish by MATLAB on a
laptop. For larger n—k, such as 32, carrying out the full search
over a single vector already takes extremely long time as also
has been noted in [3], [4]. An approximate tree search method
with early truncation was adopted in [4]. In our design, the
search for [t; ;_1,--- ,t;1,%:,0] is limited to the vectors whose
decimal value is in the range of [0,27"(:™) — 1], where m
is an upper bound. For n — k = 32, the search is finished in
less than a minute when m is set to 19, and a design with
lower gate count than that in [4] is already found from this
shortened search. Search has also been done by setting m=20,
21, and 22. The additional reduction on the row weights of
B, is becoming smaller for larger m.

A,r = Byr x T and T is computed from the T!
found from the search. There might be multiple vectors
for t; that produce the same minimized weight in the ith
row of B,r. These candidates lead to variations on T and
hence A,r. They are recorded, and search over combinations
of the candidate vectors can be carried out to reduce the
complexity of A,r and T multiplications. When n — k is
larger, there are more t; with multiple candidates, and they
have greater numbers of candidates. Trying every possible
combination of the candidates also leads to overwhelming
search complexity. To shorten the search, an upper bound,
cap, can be set on the number of candidates to try for each ;.
Our proposed search method is summarized in Algorithm A.

Algorithm A: Proposed search method for T—!
fori=1ton—k
search for t; that minimize the weight of [0, --- ,0,t;]xB,
record every vector that leads to the minimum weight
denote the vector number by n;
if H?;lk n; is an overwhelming number
set n; = min(n,, cap)
try n; candidates of t; and hence H?;lk n; combinations of
t; to find the one leading to minimal total number of ‘I’s in
BpT7ApT7 and T

From our simulations, using a small value for cap, such as 2
or 3, leads to noticeable improvement on the total number of
‘1’s compared to not trying any alternative candidates for t;.
Further increasing cap does not necessarily generates a better
design.

IV. SUBSTRUCTURE SHARING WITH CRITICAL PATH
CONSTRAINTS

If a substructure, also called a common term, appears in
multiple output formulas, then this substructure only needs to
be computed once and it can be shared in the computations of
multiple outputs. The complexity of constant matrix multipli-
cations is more accurately estimated by applying SS. The SS

Fig. 3. Example of substructure sharing

for achieving optimal gate count reduction is an NP-complete
problem. Also different SS schemes lead to trade-offs on the
gate count and CPD. To achieve high clock frequency in
parallel LFSRs, SS needs to be applied with constraints on
the CPD. Although many SS schemes targeting at gate count
reduction have been proposed, only a few of them address
the critical path issue associated with sharing substructures.
In [9], the CPD is computed by constructing a restriction
graph describing the SS, and a newly identified substructure
is only adopted if it does not lead to CPD violation. In [10],
the CPD is computed through updating a delay matrix along
with identifying substructions for sharing. Matrices are more
friendly to computer execution than restriction graphs.

In this section, a simplified vector-based CPD computation
method for SS is proposed, and considerations in substructure
selection that help to reduce the CPD are discussed. In our
SS scheme, first consider that the 2-term pattern appearing
most in the outputs is shared each time, since an XOR gate
has two inputs. If there is a tie, pick a pattern randomly. Also
substructures participate in the pattern matching recursively.
Consider an example that computes yo = xo+x1+T2+T3+Ts,
Y1 = To + 1 + T2 + 23 + 24, and Yo = T2 + T3 + T4 + T5.
The substructures identified for sharing in iteration 1, 2, and
3are tg = X2 + T3, x7 = Te + x4 and Tg = xg + T1,
respectively. The SS can be expressed by a graph as shown in
Fig. 3. Instead of converting this graph to a restriction graph
and then apply a recursive process to compute the CPD,
a depth vector, d, can be kept and updated along with the
identifications of the substructures. d is initially an all-zero
vector, when a substruction z; = x; + x; is adopted, an
entry d; = max{xz;,x;} + 1 is added to the vector. In the
above example, d = [0000001], [00000012], [000000121] in
iteration 1, 2, and 3, respectively. In the substructure-shared
output formula, a term is either an original input or a shared
substructure. Denote the numbers of terms whose values in
the final depth vector are 0,1,2,--- by so, S1,S2,---. Then
the CPD for computing the output can be derived using
Algorithm B. In this algorithm, $,,4, is the last nonzero s;.
The num in iteration ¢ is the number of intermediate items
available to be added up after ¢ levels of XOR gates, assuming
2-input XORs are used to add up inputs, substructures, and
intermediate results as early as possible in a tree structure.
This algorithm generates the same result as that in [9], [10]
with simpler interpretations and computations. In the above
example, y; is computed as x7 + xg using SS. dy = 2 and
dg = 1 in the final depth vector. Hence sy = 0,57 = 1, and
so = 1. Applying Algorithm B, num is initialized to so = 0,
and becomes 1, 2 and 1 in the iterations that ¢ = 1,2 and 3,
respectively. The iteration breaks when ¢ = 3 and CPD = 3.

1549-7747 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII1.2018.2860934, IEEE

Transactions on Circuits and Systems II: Express Briefs

TABLE I
GENERATOR POLYNOMIALS OF CRCs

[[Generator polynomial

CRC-12 2401 g3 4224241
CRC-16 16 4 215 442 41
SDLC 164 212 42541

SDLC reverse 16 4 g1l gt 41

x
x
x

CRC-16 reverse || 26 + 2% + 2 +1
x
x

CRC32 3T %6 1 225 1 222 1 516 1 212 1 511 1 510
+af+a"+aS+at 422+ +1

TABLE II
OPTIMAL T—! FROM PROPOSED CONSTRUCTION

H t1,to,ts, -+ in hexadecimal vectors
CRC-12 2,5, A, 15, 2A, 55, AA, 155, 2AA, 555, AAB
CRC-16 3,7, F, 1F, 3F, 7F, FF, IFF, 3FF, 7FF, FFF, 1FFF
3FFF, 7FFF, FFFE
SDLC 2, 4,8, 11, 23, 46, 8C, 108, 231, 463, 853, 118D

210A, 4298, 8C6B

CRC-16 reverse 3,6, C, 18, 30, 60, CO, 180, 300, 600, C00, 1800

3000, 7FFE, FFFD

SDLC reverse 2,4, 8, 11, 23, 44, 88, 111, 233, 466, 8CD, 1113

2226, 44C0, 8981

CRC-32 1, 3, 6, D, 1A, 35, 6A, D5, 1AA, 355, 6AA, D55
1409, 246B, 594A, FAAS8, 1F551, 3EAA3, 7D546
FAAS8C, 19F323, 2CA50B, 594A16, 9CDFC7
139BF8E, 20735A1, 40E6B42, 81CD684, 1039AD08

201384AD, 4018B734, 80225381

Algorithm B: Critical path delay computation method for
systems with shared substructures
input: sg, S1, - - -
num = sg,1 =10
while (num # 1) or (i < max)

i=1i+1

num = [(num/2)] + s; (set s,=0 if i > max)
CPD =i

) Smam

Similar to that in [9], for a possible shareable substructure,
the CPD of each output adopting this substructure is computed.
If the CPD exceeds the limit, then the substructure is not
adopted in that output. As shown by the x¢ and x7 nodes
in Fig. 3, using a substructure as the input of another adds
one more level of logic in the data path. When there are
tight constraints on the CPD, such iterative SS may saturate
the CPD early and prevent more substructures from being
shared. One example for this case is the multiplication of a
triangular matrix that is all ‘1’ under or above the diagonal. To
prevent this from happening, priorities can be given to those
substructures built by using the original inputs first before
recursive SS is allowed.

V. COMPARISONS WITH PRIOR DESIGNS

To compare with prior work, the CRCs listed in Table I are
considered. Algorithm A is applied to find the T—! for each
CRC. For CRCs of length 12 and 16, all possible vectors for

each t; are searched, and all possible combinations of the t;
candidates are tried. For CRC-32, searching has been done
by setting the upper bound, m, to 22, and up to cap = 3
candidates are tried for each t; to form the T—' matrix. The
entire search is finished in less than 50 minutes in MATLAB
on a laptop. The optimal T—! found are listed in Table II
Each hexadecimal vector represents a t;. to = 1 and is not
included. The complexities of the matrix multiplications are
summarized in Table III. In this table, the numbers of ‘1’s
are directly counted from the matrices. The numbers of XOR
gates are derived by applying the SS described in the previous
section. The limit of the CPD is set to 4 for CRCs of length
12 and 16, and is set to 5 for CRC-32. As shown in Fig. 2,
n — k XOR gates are used to add up the outputs of the A,r
and B, multiplications. These XOR gates are included in
the total gate counts in Table III. They also contribute to one
more XOR in the data path and need to be included in the
calculation of the CPD of the overall architecture. In state-of-
the-art CMOS process, a data path of 5 or 6 XOR gates can
easily fit into < 1ns timing budget, and hence no pipelining
is applied to the transformed LFSRs.

Various m and cap have been tried in our search for CRC-
32. The numbers of ‘1’s in B, are 193, 186, 180, 174, 173
when m is set to 18, 19, 20, 21, 22, respectively. When m =
22, the total number of ‘1’s in the three matrices is reduced
from 840 to 782 and futher to 771 when the value of cap is
increased from 1 to 2 and to 3.

The complexities of the designs in [3], [4] are listed Table
IIT for comparison. It turns out that for CRC-12 and CRC-16,
the T matrices computed from the optimal T—! targeting at
minimizing the row weights of T~ x B, in our proposed
approach are the same as the optimal T found in [4] for
minimizing the total number of ‘1’s in the three matrices. The
overall CPDs provided in [4] do not include the contribution of
the XOR adding up the A7 and B, multiplication results.
Also there are typos in the numbers of XOR gates provided
in [4], and no detail was disclosed about the adopted SS
scheme. The gate count and CPD vary with the SS scheme.
Our proposed SS scheme is applied to the matrices specified
in [4] to derive the corresponding XOR gate counts and CPDs
listed in Table III. The gate counts from our SS are smaller
than those provided in [4] for most of the matrices. In [3],
the XOR gate count is derived as the sum of the row weights
minus one without applying SS. The XOR gate counts listed
in Table III for [3] are derived by applying our SS scheme.

The XOR gate counts are also normalized with regard to
those of the design in [4] in Table III. Our design has the
same CPD, same or just one more gate than that in [4] for
CRCs with length 12 and 16. For CRC-32, our approach
is able to reduce the gate count by 8%. More importantly,
our design enables substantial power reduction compared to
[4]. In modern communication systems, the size of a data
sector is usually at least a few kilo bits long. Hence, the T
matrix multiplication in Fig. 2 is only active for at most a few
percent of the clock cycles. On the other hand, the B,r and
A, r multiplications are running in almost every clock cycle.
Hence, the gate counts in these components provide a good
comparison on the average power consumption. As calculated

1549-7747 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII1.2018.2860934, IEEE

Transactions on Circuits and Systems II: Express Briefs

TABLE III
COMPARISONS OF PARALLEL LFSRS BASED ON STATE-SPACE TRANSFORMATIONS

design A, B, T Total XORs active every
‘" [XOR [CPD [‘I' [XOR [CPD | ‘I’ [XOR [CPD [| ‘I" | XOR (normalized) [CPD || clock (normalized)
CRC-12 [3] 20 8 1 54 25 3 46 23 3 120 68 (1.36) 4 1.16
[4] 29 15 3 25 12 4 23 11 2 77 50 (1) 5 1
proposed | 29 15 3 25 12 4 23 11 2 77 50 (1) 5 1
CRC-16 [3] 18 2 1 80 40 4 90 40 4 188 98 (1.48) 5 1.16
[4] 35 18 2 33 16 4 32 16 2 100 66 (1) 5 1
proposed 35 18 2 33 16 4 32 16 2 100 66 (1) 5 1
SDLC [3] 18 2 1 106 53 4 102 52 4 226 123 (1.37) 5 0.95
[4] 88 42 3 45 17 3 31 15 2 164 90 (1) 4 1
proposed 67 33 3 38 17 3 52 24 3 157 90 (1) 4 0.88
CRC-16 [3] 18 2 1 80 40 4 92 40 4 190 98 (0.99) 5 0.71
Reverse [4] 154 45 4 73 21 4 33 17 2 260 99 (1) 5 1
proposed | 109 36 4 32 15 4 117 33 4 258 100 (1.01) 5 0.82
SDLC [3] 18 2 1 106 50 4 102 49 4 226 117 (1.34) 5 0.97
Reverse [4] 84 39 4 38 15 3 33 17 2 155 87 (1) 5 1
proposed 68 34 4 35 15 3 47 23 3 150 88 (1.01) 5 0.93
CRC-32 [3] 45 13 1 447 218 5 436 221 5 928 484(1.02) 6 0.57
[4] 414 211 5 425 216 5 49 17 2 888 476 (1) 6 1
proposed | 332 169 5 173 107 4 266 128 5 771 436 (0.92) 6 0.67
TABLE IV VI. CONCLUSION
COMPARISONS OF PARALLEL LFSR ARCHITECTURES . .
This paper proposed a new transformation for parallel
design [XOR [DE [CPD ATP active ATP LFSRs. The proposed design effectively shifts the complexity
(normalized) | (normalized) to the transformation matrix multiplication, which is only
CRC-12 [6] 103 |24 | 4 1 1 active in the last clock cycle. As a result, the proposed de-
proposed | 50 |12 | 5 0.61 0.51 sign achieves substantial reduction on the power consumption
CRC-16 (6] 4 32 |5 1 1 without increasing the CPD or total gate count compared to
proposed | 66 |16 | 6 0.76 0.63 other transformed designs. In addition, a simplified method for
SDLC [6] 97 32 | 3 1 1 . . .
proposed [90 |16 | 4 703 083 computing the CPD of syst.ems adoptlpg SS is .derzloped.to
CRC-16 6] 2 132 | 2 1 1 better evaluate the complexity of matrix multiplications with
reverse proposed | 100 |16 | 5 1.19 0.88 CPD constraints. Future work will address efficient parallel
SDLC [6] 9 (32 | 4 1 1 design of long LFSRs.
reverse proposed | 88 |16 | 5 1.01 0.81
CRC-32 6] [675 |64 |5 1 1 REFERENCES
proposed 436 (32 | 6 0.75 0.55

in Table III, our proposed design achieves significant power
reduction for SDLC, CRC-16 reverse, and CRC-32.

Between the recursive filter-interpreted LFSR designs [5],
[6], the one in [6] has lower gate count and shorter CPD. It
is compared with our design in Table IV. In this design, the
register inputs are generated by more complex logic involving
register feedbacks and data inputs. A pipelining stage of width
p is inserted to shortern the data path. Hence, it needs p more
delay elements (DEs) compared to our design. To compare the
efficiency of architectures with different CPDs, the normalized
area-time product (ATP) calculated as (1.5 - DE + XOR) -
CPD [6] is adopted. In the architecture from [6], almost every
logic gate is active in each clock cycle. The active ATP defined
according to the area of the XORs and DEs active in each
clock cycle is also compared in Table IV. It is evident that our
proposed LFSRs achieve substantial improvements on power
consumption compared to those filter-interpreted designs and
have much higher efficiency for many CRCs.

[1] T.-B. Pei, and C. Zukowski, “High-speed parallel CRC circuits in VLSL,”

IEEE Trans. on Commun., vol. 40, no. 4, pp. 653-657, Apr. 1992.

J. H. Derby, “High-speed CRC computation using state-space transfor-

mations,” Proc. IEEE Global Commun. Conf., pp. 166-170, Nov. 2001.

C. Kennedy and A. Reyhani-Masoleh, “High-speed CRC computations

using improved state-space transformation,” Proc. IEEE Intl. Conf. Elec-

tro/Info. Tech., pp. 9-14, 2009.

[4] G. Hu, J. Sha, and Z. Wang, “High-speed parallel LFSR architectures
based on improved state-space transformations,” IEEE Trans. on VLSI
Syst. vol. 25, no. 3, pp. 1159-1163, Mar. 2017.

[5] M. Ayinala and K. K. Parhi, “High-speed parallel architectures for linear
feedback shift registers,” IEEE Trans. on Signal Process., vol. 59, no. 9,
pp. 4459-4469, Sep. 2011

[6] J. Jung, et. al., “Efficient parallel architecture for linear feedback shift
registers,” IEEE Trans. on Circuits and Syst.-1I, vol. 62, no. 11, pp. 1068-
1072, Nov. 2015.

[7] X. Zhang and K. K. Parhi, “High-speed architectures for parallel long
BCH encoders,” IEEE Trans. on VLSI Syst., vol. 13, no. 7, pp. 872-877,
Jul. 2005.

[8] C. Cheng and K. K. Parhi, “High-speed parallel CRC implementation
based on unfolding, pipelining, and retiming,” IEEE Trans. on Circuits
and Syst.-1I, vol. 53, no. 10, pp. 1017 - 1021, Oct. 2006.

[9] N. Chen and Z. Yan, “High-performance designs of AES transforma-
tions,” Proc. IEEE Intl. Symp. Circuits and Syst., pp. 2906-2909, May
20009.

[10] N. Wu, et. al., “Improving common subexpression elimination algorithm
with a new gate-level delay computing method,” Proc. World Congress
on Engr. and Computer Science, Oct. 2013.

[2

[

3

—_

1549-7747 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

